论文标题
在Borel的稳定范围内,$ \ mathrm {gl}(n,\ mathbb {z})$
On Borel's stable range of the twisted cohomology of $\mathrm{GL}(n,\mathbb{Z})$
论文作者
论文摘要
Borel的稳定性和消失定理给出了$ \ Mathrm {gl}(n,\ Mathbb {Z})$的稳定共同体,并在代数$ \ Mathrm {gl}(n,n,\ mathbb {z})中具有系数。我们计算了Borel所说的改进的稳定范围。为了进一步改善Borel的稳定范围,我们将Kupers-Miller-Patzt的方法调整为任何代数$ \ Mathrm {Gl}(n,n,\ Mathbb {Z})$ - 表示。
Borel's stability and vanishing theorem gives the stable cohomology of $\mathrm{GL}(n,\mathbb{Z})$ with coefficients in algebraic $\mathrm{GL}(n,\mathbb{Z})$-representations. We compute the improved stable range that Borel remarked about. In order to further improve Borel's stable range, we adapt the method of Kupers-Miller-Patzt to any algebraic $\mathrm{GL}(n,\mathbb{Z})$-representations.