论文标题
开放量子系统中计数统计数据的渐近较大偏差
Asymptotic Large Deviations of Counting Statistics in Open Quantum Systems
论文作者
论文摘要
我们使用半马尔可夫流程方法来计算三个开放量子系统的计数统计数据的巨大偏差,包括$λ$ - 和$ v $ -configurations中的共振剂两级系统和共鸣的三级系统。在前两个系统中,获得了缩放累积产生函数的根部解。尽管这在第三个系统中是不可能的,但是由于存在一般的六度多项式方程,因此我们仍然获得复杂系统的渐近偏差。我们的结果表明,在这些开放的量子系统中,零电流的较大偏差函数等于操作员$ - {\ rm I} \ hat H $最大的非零实际部位,其中$ \ hat H $是非官员的汉密尔顿,而在大型电流中,这些功能都具有统一的表格。
We use a semi-Markov process method to calculate large deviations of counting statistics for three open quantum systems, including a resonant two-level system and resonant three-level systems in the $Λ$- and $V$-configurations. In the first two systems, radical solutions to the scaled cumulant generating functions are obtained. Although this is impossible in the third system, since a general sixth-degree polynomial equation is present, we still obtain asymptotically large deviations of the complex system. Our results show that, in these open quantum systems, the large deviation rate functions at zero current are equal to two times the largest nonzero real parts of the eigenvalues of operator $-{\rm i}\hat H$, where $\hat H$ is a non-Hermitian Hamiltonian, while at a large current, these functions possess a unified formula.