论文标题
Möbius功能的二次曲折的平均正方形
Mean squares of quadratic twists of the Möbius function
论文作者
论文摘要
In this paper, we evaluate asymptotically the sum \[ \sum_{d \leq X} \left( \sum_{n \leq Y} μ(n)\leg {8d}{n} \right)^2, \] where $\leg {8d}{n}$ is the Kronecker symbol and $d$ runs over positive, odd, square-free整数。
In this paper, we evaluate asymptotically the sum \[ \sum_{d \leq X} \left( \sum_{n \leq Y} μ(n)\leg {8d}{n} \right)^2, \] where $\leg {8d}{n}$ is the Kronecker symbol and $d$ runs over positive, odd, square-free integers.