论文标题

单包图算法并不总是最佳的

The One-Inclusion Graph Algorithm is not Always Optimal

论文作者

Aden-Ali, Ishaq, Cherapanamjeri, Yeshwanth, Shetty, Abhishek, Zhivotovskiy, Nikita

论文摘要

Haussler,Littlestone和Warmuth的单包图算法实现了标准PAC分类设置中的最佳预测风险。在第一个柯尔特的开放问题之一中,沃德斯猜想这种预测策略始终意味着风险最佳的高概率,因此也是最佳的PAC算法。我们从最强的意义上反驳了这一猜想:对于任何实际有趣的Vapnik-Chervonenkis阶级,我们提供了一种最佳的最佳单包含图算法,其高概率风险界限都不能超出Markov的不平等现象所暗示的。我们对这些性能差的一包图算法的构建使用varshamov-tenengolts错误校正代码。 我们的负面结果有几个影响。首先,它表明,基于单个包含图算法的概括,最近的几种预测策略继承了相同的高概率性能。其次,我们的分析显示了另一个统计问题,该问题享有一个估计器,该估计值可通过一个淘汰的论点在预期方面是最佳的,但在高概率方面失败了。尽管二进制损失的有限性,但基于集中不平等的参数通常会提供急剧的高概率风险范围,但这种差异仍然存在。

The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth achieves an optimal in-expectation risk bound in the standard PAC classification setup. In one of the first COLT open problems, Warmuth conjectured that this prediction strategy always implies an optimal high probability bound on the risk, and hence is also an optimal PAC algorithm. We refute this conjecture in the strongest sense: for any practically interesting Vapnik-Chervonenkis class, we provide an in-expectation optimal one-inclusion graph algorithm whose high probability risk bound cannot go beyond that implied by Markov's inequality. Our construction of these poorly performing one-inclusion graph algorithms uses Varshamov-Tenengolts error correcting codes. Our negative result has several implications. First, it shows that the same poor high-probability performance is inherited by several recent prediction strategies based on generalizations of the one-inclusion graph algorithm. Second, our analysis shows yet another statistical problem that enjoys an estimator that is provably optimal in expectation via a leave-one-out argument, but fails in the high-probability regime. This discrepancy occurs despite the boundedness of the binary loss for which arguments based on concentration inequalities often provide sharp high probability risk bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源