论文标题
log fano的k-moduli
K-moduli of log Fano complete intersections
论文作者
论文摘要
我们明确地描述了由Fano完全交叉的两个四倍三倍和超平面形成的原木对的K-Moduli压缩和壁横梁,并通过构建具有此类完整交叉点的VGIT商的同构和超平面。我们进一步根据奇异性来表征所有可能的Git商。我们还明确描述了莫里木分类中FANO的变形家族的K-Moduli,可以将其视为第三个尺寸中两个四边形的完整交叉点的吹动,通过向我们表现出与Git的同构,我们还明确描述了同构的同构。此外,我们还构建了计算算法方法来研究完整交叉点和超平面的VGIT商,我们用来获得上面详述的明确描述。我们还引入了反向模量连续性方法,该方法使我们能够将规范的git压缩与Fano品种的K-Moduli相关联。
We explicitly describe the K-moduli compactifications and wall crossings of log pairs formed by a Fano complete intersection of two quadric threefolds and a hyperplane, by constructing an isomorphism with the VGIT quotient of such complete intersections and a hyperplane. We further characterize all possible such GIT quotients based on singularities. We also explicitly describe the K-moduli of the deformation family of Fano 3-folds 2.25 in the Mori--Mukai classification, which can be viewed as blow ups of complete intersections of two quadrics in dimension three, by showing there exists an isomorphism to a GIT quotient which we also explicitly describe. Furthermore, we also construct computational algorithmic methods to study VGIT quotients of complete intersections and hyperplanes, which we use to obtain the explicit descriptions detailed above. We also introduce the reverse moduli continuity method, which allows us to relate canonical GIT compactifications to K-moduli of Fano varieties.