论文标题

渐近平坦的真空解决方案,用于降低的半经典重力

Asymptotically flat vacuum solutions in order-reduced semiclassical gravity

论文作者

Arrechea, Julio, Barceló, Carlos, Carballo-Rubio, Raúl, Garay, Luis J.

论文摘要

我们研究了量子反应对半经典近似中Schwarzschild几何形状的影响。标量场的重新归一化应力 - 能量张量(RSET)是通过减少Anderson,Hiscock和Samuel(AHS)得出的分析近似的阶数来建模的。由于所得的AHS半经典爱因斯坦方程在度量中是第四个衍生秩序,因此我们遵循订单处方的减少以缩小解决方案的空间。在此处方的促进的情况下,我们开发了一种方法,该方法允许获得RET的新分析近似,该近似具有良好的RSET的所有理想特性:保护,规律性和真空状态贡献的正确估计。我们得出了一组由Boulware状态中的订单降低的AHS-RET来源的半经典方程。我们将自洽的解决方案分类为这套场方程,讨论其主要特征,并解决它们类似于高阶半经典理论的解决方案。最后,我们在通过Polyakov近似获得的最小耦合标量场获得的文献中建立了与以前的结果进行比较。

We investigate the effects of quantum backreaction on the Schwarzschild geometry in the semiclassical approximation. The renormalized stress-energy tensor (RSET) of a scalar field is modelled via an order reduction of the analytical approximation derived by Anderson, Hiscock and Samuel (AHS). As the resulting AHS semiclassical Einstein equations are of fourth-derivative order in the metric, we follow a reduction of order prescription to shrink the space of solutions. Motivated by this prescription, we develop a method that allows to obtain a novel analytic approximation for the RSET that exhibits all the desired properties for a well-posed RSET: conservation, regularity, and correct estimation of vacuum-state contributions. We derive a set of semiclassical equations sourced by the order-reduced AHS-RSET in the Boulware state. We classify the self-consistent solutions to this set of field equations, discuss their main features and address how well they resemble the solutions of the higher-order semiclassical theory. Finally, we establish a comparison with previous results in the literature obtained through the Polyakov approximation for minimally coupled scalar fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源