论文标题

通过利用具有心理语言特征的变压器来提高基于文本的情绪检测的普遍性

Improving the Generalizability of Text-Based Emotion Detection by Leveraging Transformers with Psycholinguistic Features

论文作者

Zanwar, Sourabh, Wiechmann, Daniel, Qiao, Yu, Kerz, Elma

论文摘要

近年来,人们对建立预测模型的兴趣越来越多,以利用自然语言处理和机器学习技术,以检测来自各种文本源的情绪,包括社交媒体帖子,微博客或新闻文章。然而,在现实世界中的情感和情感应用中部署这种模型面临挑战,尤其是较差的范围内概括性。这可能是由于特定领域特定的差异(例如主题,交流目标和注释方案),这些差异使不同的情感识别模型之间的转移变得困难。在这项工作中,我们提出了基于文本的情感检测的方法,该方法将变形金刚模型(Bert and Roberta)与双向长期记忆(BILSTM)网络结合使用,该网络接受了一系列全面的心理语言特征。首先,我们在两个基准数据集上评估模型内域内的性能:GOEMOTION和ISEAR。其次,我们从统一的情绪数据集中对六个数据集进行了转移学习实验,以评估其不域的鲁棒性。我们发现,与基于标准变压器的方法相比,提出的混合模型提高了推广到分布数据的能力。此外,我们观察到这些模型在内域数据上有竞争力。

In recent years, there has been increased interest in building predictive models that harness natural language processing and machine learning techniques to detect emotions from various text sources, including social media posts, micro-blogs or news articles. Yet, deployment of such models in real-world sentiment and emotion applications faces challenges, in particular poor out-of-domain generalizability. This is likely due to domain-specific differences (e.g., topics, communicative goals, and annotation schemes) that make transfer between different models of emotion recognition difficult. In this work we propose approaches for text-based emotion detection that leverage transformer models (BERT and RoBERTa) in combination with Bidirectional Long Short-Term Memory (BiLSTM) networks trained on a comprehensive set of psycholinguistic features. First, we evaluate the performance of our models within-domain on two benchmark datasets: GoEmotion and ISEAR. Second, we conduct transfer learning experiments on six datasets from the Unified Emotion Dataset to evaluate their out-of-domain robustness. We find that the proposed hybrid models improve the ability to generalize to out-of-distribution data compared to a standard transformer-based approach. Moreover, we observe that these models perform competitively on in-domain data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源