论文标题
小字符串Instanton分区功能和标量传播器
Little String Instanton Partition Functions and Scalar Propagators
论文作者
论文摘要
我们讨论了一类小字符串理论(LST),其低能描述是$ω$ background的超对称规格理论,其中量规组$ u(n)$以及在伴随表示中的物质。我们表明,这些理论的intanton分区函数可以用kronecker-eisenstein系列编写,该系列的特定限制是$ω$ - background的变形参数的特定限制,将自己组织到圆环上自由标量场的绿色函数中。我们提供了(差异)和Nekrasov亚功能之间的具体鉴定。后者的特征还包括在calabi-yau中计数特定的全体形态曲线,三倍$ x_ {n,1} $,该曲线是工程的。此外,使用分区函数根据Kronecker-Eisenstein系列的配方,我们主张新的递归结构,这些结构将较高的intanton贡献与较低产品的产品相关联。
We discuss a class of Little String Theories (LSTs) whose low energy descriptions are supersymmetric gauge theories on the $Ω$-background with gauge group $U(N)$ and matter in the adjoint representation. We show that the instanton partition function of these theories can be written in terms of Kronecker-Eisenstein series, which in a particular limit of the deformation parameters of the $Ω$-background organise themselves into Greens functions of free scalar fields on a torus. We provide a concrete identification between (differences of) such propagators and Nekrasov subfunctions. The latter are also characterised by counting specific holomorphic curves in a Calabi-Yau threefold $X_{N,1}$ which engineers the LST. Furthermore, using the formulation of the partition function in terms of the Kronecker-Eisenstein series, we argue for new recursive structures which relate higher instanton contributions to products of lower ones.