论文标题

LR-SUM:汇总较少的语言

LR-Sum: Summarization for Less-Resourced Languages

论文作者

Palen-Michel, Chester, Lignos, Constantine

论文摘要

该预印刷描述了在LR-SUM上正在进行的工作,LR-SUM是一种新的允许许可的数据集,目的是为较低的语言提供自动摘要的进一步研究。 LR-SUM包含40种语言的人写的摘要,其中许多语言的资源较低。我们描述了从多语言开放文本语料库中提取和过滤数据集的过程(Palen-Michel等,2022)。源数据是从美国语音网站收集的公共领域新闻,LR-SUM是根据Creative Commons许可证(CC By 4.0)发布的,使其成为最公开许可的多语言摘要数据集之一。我们描述了如何计划将数据用于建模实验并讨论数据集的局限性。

This preprint describes work in progress on LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages. LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022). The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe how we plan to use the data for modeling experiments and discuss limitations of the dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源