论文标题
盆景算法:生长自己的费米映射
The Bonsai algorithm: grow your own fermion-to-qubit mapping
论文作者
论文摘要
费米对量映射用于表示量子计算机上的费米子模式,这是电子结构计算的许多量子算法的重要第一步。在这项工作中,我们提出了一种形式主义,以设计三元树的灵活费米式映射。我们以直观的方式讨论生成树的结构与所得映射的某些特性之间的联系,例如Pauli重量和模式职业的定位。此外,我们介绍了一种配方,该食谱保证了Fock基础状态在量子空间中映射到计算基础状态,这是量子计算中许多应用的理想属性。基于这种形式主义,我们介绍了盆景算法,该算法将量子设备量子连接性的拓扑拓扑介绍,并返回量身定制的费米亚到定价映射,从而减少了相对于其他范式映射的互换。我们通过在IBM量子计算机中广泛使用的重甲状腺拓扑塑料制作映射来说明算法。所得的映射具有有利的Pauli重量缩放$ \ Mathcal {O}(\ sqrt {n})$,同时确保单个激发操作不需要交换门。
Fermion-to-qubit mappings are used to represent fermionic modes on quantum computers, an essential first step in many quantum algorithms for electronic structure calculations. In this work, we present a formalism to design flexible fermion-to-qubit mappings from ternary trees. We discuss in an intuitive manner the connection between the generating trees' structure and certain properties of the resulting mapping, such as Pauli weight and the delocalisation of mode occupation. Moreover, we introduce a recipe that guarantees Fock basis states are mapped to computational basis states in qubit space, a desirable property for many applications in quantum computing. Based on this formalism, we introduce the Bonsai algorithm, which takes as input the potentially limited topology of the qubit connectivity of a quantum device and returns a tailored fermion-to-qubit mapping that reduces the SWAP overhead with respect to other paradigmatic mappings. We illustrate the algorithm by producing mappings for the heavy-hexagon topology widely used in IBM quantum computers. The resulting mappings have a favourable Pauli weight scaling $\mathcal{O}(\sqrt{N})$ on this connectivity, while ensuring that no SWAP gates are necessary for single excitation operations.