论文标题

霍德(Hölder

Hölder continuous maps on the interval with positive metric mean dimension

论文作者

Acevedo, Jeovanny M., Romaña, Sergio, Arias, Raibel

论文摘要

用有限的拓扑维度修复紧凑的度量空间$ x $。令$ c^{0}(x)$为$ x $和$ h^α(x)$连续地图的空间,$α$-Hölder连续地图上的$ x $上的$ x $,以$α\ in(0,1]。$ $ $ $ $ $ $ h^{1}(1}(x)$是$ x $ x $ x $ x $ x y是$ x}的空间。 h^β(x)\子集h^α(x)\ subset c^{0}(x),\ quad \ text {其中} 0 <α<β<1。$$,众所周知,如果$ ϕ \ in H^{1}(1}(x)$),则$ ϕ $ nitrim nitric Meementr Is fil $ niment y niment in niment in niment on niment。然后,$ c^{0}(x)$包含一个残差子集,其元素具有正值度的均值。

Fix a compact metric space $X$ with finite topological dimension. Let $C^{0}(X)$ be the space of continuous maps on $X$ and $ H^α(X)$ the space of $α$-Hölder continuous maps on $X$, for $α\in (0,1].$ $H^{1}(X)$ is the space of Lipschitz continuous maps on $X$. We have $$H^{1}(X)\subset H^β(X) \subset H^α(X) \subset C^{0}(X),\quad\text{ where }0<α<β<1.$$ It is well-known that if $ϕ\in H^{1}(X)$, then $ϕ$ has metric mean dimension equal to zero. On the other hand, if $X$ is a finite dimensional compact manifold, then $C^{0}(X)$ contains a residual subset whose elements have positive metric mean dimension. In this work we will prove that, for any $α\in (0,1)$, there exists $ϕ\in H^α([0,1]) $ with positive metric mean dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源