论文标题
n-消除i-primary理想
n-absorbing I-primary ideals in commutative rings
论文作者
论文摘要
我们定义了在称为N-吸收I-Primary理想的通勤环中N-吸收理想的新概括。我们研究了这种新概括的一些特征和特性。如果p是r和$ \ sqrt {ip} = i \ sqrt {p} $的n-值得i-primary理想,则$ \ sqrt {p} $是n- absorming i-primary i-primary理想。 \ sqrt {p}} \ subseteq ip $,然后p是R的n-absoring i-primary理想。
We define a new generalization of n-absorbing ideals in commutative rings called n-absorbing I-primary ideals. We investigate some characterizations and properties of such new generalization. If P is an n-absorbing I-primary ideal of R and $\sqrt{IP} =I \sqrt{P} $, then $\sqrt{P}$ is a n-absorbing I-primary ideal of R. Also, if $\sqrt{P}$ is an (n-1)-absorbing ideal of R such that $\sqrt{I \sqrt{P}} \subseteq IP$, then P is an n-absorbing I-primary ideal of R.