论文标题
来自图像的灵巧操作:自主现实世界RL通过替代指导
Dexterous Manipulation from Images: Autonomous Real-World RL via Substep Guidance
论文作者
论文摘要
复杂且富含接触的机器人操纵任务,尤其是那些涉及多指手和不足的物体操纵的任务,对任何控制方法都构成了重大挑战。基于强化学习的方法为这种环境提供了一种吸引人的选择,因为它们可以使机器人能够在没有强大的建模假设的情况下巧妙地平衡接触力和灵活地重新定位对象。但是,对现实世界灵巧的操纵系统进行强化学习通常需要大量的手动工程。这否定了自主数据收集的好处,并原则上应提供强化学习应提供的易用性。在本文中,我们描述了一种基于视觉的灵巧操作的系统,该系统为用户提供了一种“无编程”方法来定义新任务并启用具有复杂多指手的机器人,以通过互动来学习执行它们。我们系统基础的核心原则是,在基于视觉的环境中,用户应该能够提供高级中间监督,以规避远程操作或动觉教学的挑战,这使机器人不仅可以有效地学习任务,而且可以自主练习。我们的系统包括一个框架,可供用户定义最终任务和中间子任务,其中包括图像示例,加强学习过程,在没有干预的情况下自动学习任务,以及通过直接在现实世界中直接在现实世界中,无需模拟,手动建模或奖励工程的四指机器人手工学习多阶段的对象操纵任务的实验结果。
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.