论文标题

频率有限的h $ _2 $基于相对错误的型号减少

Frequency-limited H$_2$ Model Order Reduction Based on Relative Error

论文作者

Zulfiqar, Umair, Du, Xin, Song, Qiuyan, Xiao, Zhi-Hua, Sreeram, Victor

论文摘要

频率限制的模型订单降低旨在近似具有降级模型的高级模型,该模型在特定频率范围内保持高富度。除了这个范围之外,由于问题的性质,准确性降低是可以接受的。通常使用近似误差的绝对或相对度量来评估还原模型的质量。代表百分比误差的相对误差在减少植物模型以设计降低订单控制器的目的时变得特别相关。本文得出了实现相对误差系统频率受限H2标准的局部最佳的必要条件。基于这些最佳条件,提出了一种倾斜投影算法,以确保在所需的频率间隔内出现小相对误差。与现有的算法不同,所提出的方法不必求解大规模的Lyapunov和Ricatti方程。取而代之的是,所提出的算法依赖于求解稀疏密集的Sylvester方程,该方程通常在大多数H2模型阶降低算法中出现,但可以有效地解决。为了评估所提出的算法的性能,与现有的三种技术进行了比较:频率限制的平衡截断,频率限制的平衡随机截断和频率限制的迭代迭代理性krylov算法。比较分析着重于设计高阶植物的减少阶控制器。数值结果证实,使用所提出的算法获得的减少阶控制器可确保出色的稳健闭环稳定性。

Frequency-limited model order reduction aims to approximate a high-order model with a reduced-order model that maintains high fidelity within a specific frequency range. Beyond this range, a decrease in accuracy is acceptable due to the nature of the problem. The quality of the reduced-order model is typically evaluated using absolute or relative measures of approximation error. Relative error, which represents the percentage error, becomes particularly relevant when reducing a plant model for the purpose of designing a reduced-order controller. This paper derives the necessary conditions for achieving a local optimum of the frequency-limited H2 norm for the relative error system. Based on these optimality conditions, an oblique projection algorithm is proposed to ensure a small relative error within the desired frequency interval. Unlike existing algorithms, the proposed approach does not necessitate solving large-scale Lyapunov and Ricatti equations. Instead, the proposed algorithm relies on solving sparse-dense Sylvester equations, which typically emerge in the majority of H2 model order reduction algorithms, but can be efficiently solved. To evaluate the performance of the proposed algorithm, a comparison is conducted with three existing techniques: frequency-limited balanced truncation, frequency-limited balanced stochastic truncation, and frequency-limited iterative Rational Krylov algorithm. The comparative analysis focuses on designing reduced-order controllers for high-order plants. Numerical results confirm that the reduced-order controllers obtained using the proposed algorithm ensure superior robust closed-loop stability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源