论文标题

顶点操作员超级级别的合理性具有合理的保形权重

Rationality of vertex operator superalgebras with rational conformal weights

论文作者

Lin, Xingjun

论文摘要

对于Aggine Vertex Algebra $ v_k(\ Mathfrak {g})$,在可接受的级别$ k $ $ \ hat {\ Mathfrak {g}} $中,我们证明了弱$ v_k(\ Mathfrak {g})的某些子类别(\ Mathfrak {g})$ - 模块类别是emisimple的。结果,我们表明$ v_k(\ mathfrak {g})$相对于一个Virasoro元素的家庭是理性的。我们还证明,对于Virasoro元素的家族,某些仿射顶点操作员超级级和最小$ W $ - 代数是合理的。

For the affine vertex algebra $V_k(\mathfrak{g})$ at an admissible level $k$ of $\hat{\mathfrak{g}}$, we prove that certain subcategory of weak $V_k(\mathfrak{g})$-module category is semisimple. As a consequence, we show that $V_k(\mathfrak{g})$ is rational with respect to a family of Virasoro elements. We also prove that certain affine vertex operator superalgebras and minimal $W$-algebras are rational with respect to a family of Virasoro elements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源