论文标题

基于知识图的推论的因果推断

Causal Inference for Knowledge Graph based Recommendation

论文作者

Wei, Yinwei, Wang, Xiang, Nie, Liqiang, Li, Shaoyu, Wang, Dingxian, Chua, Tat-Seng

论文摘要

知识图(kg)作为侧信息,倾向于补充基于协作过滤(CF)的建议模型。通过与KGS中的实体绘制项目,先前的研究主要从KGS中提取知识信息,并将其注入用户和项目的表示。尽管其表现出色,但他们未能对kg中属性的用户偏好进行建模,因为他们忽略了(1)KG的结构信息可能会阻碍用户偏好学习,并且(2)用户的交互属性会导致相似性分数的偏见问题。 在因果关系工具的帮助下,我们在基于KG的建议中构建了变量之间的因果关系关系,并确定引起上述挑战的原因。因此,我们开发了一个新的框架,称为基于知识图的因果建议(KGCR),该建议实现了脱致的用户偏好学习,并采用了反事实推断以消除相似性评分的偏见。最终,我们在三个数据集上评估了我们提出的模型,包括Amazon-Book,LastFM和Yelp2018数据集。通过在数据集上进行广泛的实验,我们证明KGCR的表现优于几个最先进的基线,例如KGNN-LS,KGAT和KGIN。

Knowledge Graph (KG), as a side-information, tends to be utilized to supplement the collaborative filtering (CF) based recommendation model. By mapping items with the entities in KGs, prior studies mostly extract the knowledge information from the KGs and inject it into the representations of users and items. Despite their remarkable performance, they fail to model the user preference on attributes in the KG, since they ignore that (1) the structure information of KG may hinder the user preference learning, and (2) the user's interacted attributes will result in the bias issue on the similarity scores. With the help of causality tools, we construct the causal-effect relation between the variables in KG-based recommendation and identify the reasons causing the mentioned challenges. Accordingly, we develop a new framework, termed Knowledge Graph-based Causal Recommendation (KGCR), which implements the deconfounded user preference learning and adopts counterfactual inference to eliminate bias in the similarity scoring. Ultimately, we evaluate our proposed model on three datasets, including Amazon-book, LastFM, and Yelp2018 datasets. By conducting extensive experiments on the datasets, we demonstrate that KGCR outperforms several state-of-the-art baselines, such as KGNN-LS, KGAT and KGIN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源