论文标题

$ n $ -FACTOR的复杂性,无限斐波那契序列和数字序列

$N$-factor complexity of the infinite Fibonacci sequence and digital sequences

论文作者

Li, Yanxi, Wu, Wen

论文摘要

在本文中,我们引入了因子复杂性的变体,称为$ n $ factor复杂性,这使我们能够表征无限字母上序列的复杂性。我们准确评估了Zhang,Wen和Wu [Electron提供的无限fibonacci序列$ \ mathbf {f} $的$ n $ factor复杂性。 J. Comb。,24(2017)]。还讨论了一类数字序列的$ n $ factor复杂性,该序列的$ n $ tenter被定义为$ n $的基本$ k $表示中给定块的出现数量。

In this paper, we introduce a variation of the factor complexity, called the $N$-factor complexity, which allows us to characterize the complexity of sequences on an infinite alphabet. We evaluate precisely the $N$-factor complexity for the infinite Fibonacci sequence $\mathbf{f}$ given by Zhang, Wen and Wu [Electron. J. Comb., 24 (2017)]. The $N$-factor complexity of a class of digit sequences, whose $n$th term is defined to be the number of occurrences of a given block in the base-$k$ representation of $n$, is also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源