论文标题
球形空间的准周期振荡的数值分析
Numerical analysis of quasi-periodic oscillations with spherical spacetimes
论文作者
论文摘要
我们使用时空采用中子星来源的三个理论动机模型来测试准周期性振荡。然后,我们将我们的发现与从$ f(r)$重力推断出的球形对称时空,并具有持续的曲率,表明它与我们以前的指标完全分类,这些指标已在一般相对论的背景下采用。为此,我们在低质量X射线二进制系统中计算出八个中子星,并考虑一个重新配置器 - 诺德斯特罗姆解决方案以及一个具有未指定符号的Sitter相,用于宇宙恒定期限。特别是,我们研究了三个层次结构,即\ textit {i.e。},第一个与真正的Schwarzschild时空处理,第二个具有De Sitter阶段的第二个层次结构,其符号不是固定的\ Emph {a先验{a先验},最后是Reisser-NordströmSpaceTime,具有额外的宇宙学恒定的贡献。我们根据大都会杂货算法进行马尔可夫链蒙特卡洛分析,并推断1- $σ$和2- $σ$错误栏。对于所有来源,我们与具有非零宇宙恒定术语的球形溶液(\ textit {i.e。},de Sitter或de Sitter或Anti-DE Sitter溶液。从我们的发现中,我们注意到对净指控的拓扑贡献的存在,这似乎是从$ f(r)$重力扩展中的,似乎是不利的。最后,我们专注于这里涉及的宇宙恒定术语的物理学,研究身体后果并提出可能的扩展以改善我们的整体治疗方法。
We numerically test quasi-periodic oscillations using three theoretically-motivated models of spacetime adopting neutron star sources. Then, we compare our findings with a spherically-symmetric spacetime inferred from $F(R)$ gravity, with constant curvature, showing that it fully-degenerates with our previous metrics, that have been adopted in the context of general relativity. To do so, we work out eight neutron stars in low mass X-ray binary systems and consider a Reisser-Nordström solution plus a de Sitter phase with unspecified sign for the cosmological constant term. In particular, we investigate three hierarchies, \textit{i.e.}, the first dealing with a genuine Schwarzschild spacetime, the second with de Sitter phase whose sign is not fixed \emph{a priori} and, finally, a Reisser-Nordström spacetime with an additional cosmological constant contribution. We perform Markov chain Monte Carlo analyses, based on the Metropolis-Hastings algorithm, and infer 1--$σ$ and 2--$σ$ error bars. For all the sources, we find suitable agreement with spherical solutions with non-zero cosmological constant terms, \textit{i.e.}, with either de Sitter or anti-de Sitter solutions. From our findings, we notice that the existence of topological contribution to the net charge, suggested from $F(R)$ extensions of gravity, seems to be disfavored. Finally, we focus on the physics of the cosmological constant term here involved, investigating physical consequences and proposing possible extensions to improve our overall treatments.