论文标题
具有环形包含物的高对比度复合材料:规范抗药性渐近器
A high-contrast composite with annular inclusions: Norm-resolvent asymptotics
论文作者
论文摘要
我们研究了高对比度复合材料的运算符 - 主体分解渐近物,该复合材料由“刚性”材料组成,并带有环形“软”夹杂物(“僵硬的 - stiff”设置)。该设置来自两个具有非常不同有效波传播行为的模型。我们的分析基于Cherednichenko,Ershova和Kiselev提出的操作员 - 框架[临界PDE的有效行为:微共振,频率转换和时间分散属性。 I. Commun。数学。物理。 375,p。 1833-1884]。然后,作为研究僵硬 - 建筑复合材料上波传播的第一步,我们使用有效的描述来得出类似的“分散函数”。
We investigate the operator-norm resolvent asymptotics of a high-contrast composite, consisting of a "stiff" material, with annular "soft" inclusions (a "stiff-soft-stiff" setup). This setup is derived from two models with very different effective wave propagation behaviors. Our analysis is based on an operator-framework proposed by Cherednichenko, Ershova, and Kiselev in [Effective Behaviour of Critical-Contrast PDEs: Micro-resonances, Frequency Conversion, and Time Dispersive Properties. I. Commun. Math. Phys. 375, p. 1833-1884]. Then, as a first step towards studying wave propagation on the stiff-soft-stiff composite, we use the effective description to derive analogous "dispersion functions".