论文标题

多维热逆流燃烧器中粉碎的铁火焰的数值建模

Numerical modeling of pulverized iron flames in a multidimensional hot counterflow burner

论文作者

Wen, Xu, Scholtissek, Arne, van Oijen, Jeroen, Bergthorson, Jeffery, Hasse, Christian

论文摘要

使用数值模型模拟了在多维热逆流燃烧器中稳定的粉碎的铁火焰,该模型从Hazenberg和van Oijen(PCI,2021)开发的最新模型延伸,考虑了不稳定的效果。将结果与可用的实验数据进行比较(McRae等人,PCI,2019年),包括粒子图像测量值,直接火焰照片,流场速度以及不同铁和氧气浓度的火焰速度。比较表明,可以很好地预测粒子动力学和火焰形状。流场速度和火焰速度还显示了模拟与实验之间的定量一致性。基于经过验证的仿真结果,分析了不同的氧化剂环境的铁燃烧特性,包括热结构和多维效应。分析表明,对于两个环境,铁颗粒经历了从动力学控制的制度(点火)到在中央轴的扩散控制状态(燃烧)的过渡,对于这两个环境,颗粒温度都高于火焰阵线的气体温度,这是Damköhler的数量指示的。对于热逆流燃烧器,存在多维效应,即沿径向方向的温度和Damköhler数变化。

Pulverized iron flames stabilized in a multidimensional hot counterflow burner are simulated using a numerical model, which is extended from the state-of-the-art model developed by Hazenberg and van Oijen (PCI, 2021) considering unsteady effects. The results are compared to available experimental data (McRae et al., PCI, 2019), including particle image velocimetry measurements, a direct flame photo, the flow field velocity and the flame speed for different iron and oxygen concentrations. The comparison shows that the particle dynamics and flame shape can be reasonably well predicted. The flow field velocity and flame speed also show quantitative agreement between the simulation and the experiment. Based on the validated simulation results, the iron combustion characteristics, including the thermal structures and the multidimensional effects, are analyzed for different oxidizer environments. The analysis shows that the iron particles undergo a transition from kinetic-controlled regime (up to ignition) to a diffusion-controlled regime (burning) at the central axis for both environments with the particle temperature being higher than the gas temperature at the flame front, which is indicated by the Damköhler number. For the hot counterflow burner, there exist multidimensional effects, i.e., the temperature and Damköhler number change along the radial direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源