论文标题

深层的Riemannian网络用于端到端的EEG解码

Deep Riemannian Networks for End-to-End EEG Decoding

论文作者

Wilson, Daniel, Schirrmeister, Robin Tibor, Gemein, Lukas Alexander Wilhelm, Ball, Tonio

论文摘要

目前,通过深度学习(DL)或基于Riemannian-Meanian-Gealmitry的解码器(RBD),经常实现脑电图(EEG)解码任务的最新性能(EEG)解码任务。最近,对深度黎曼网络(DRN)的兴趣越来越大,可能结合了两种方法的优势。但是,仍有一系列主题需要额外的见解来为在脑电图中更广泛地应用DRN铺平道路。其中包括架构设计问题,例如网络大小和端到端能力。这些因素如何影响模型性能。此外,尚不清楚这些网络中的数据是如何转换的,以及这是否与传统的脑电图解码相关。我们的研究旨在通过分析具有广泛的超级参数的EEG的DRN来为这些主题的区域奠定基础。网络在五个公共脑电图数据集上进行了测试,并与最先进的转向器进行了比较。 在这里,我们提出了EE(G)-SPDNET,我们表明,这种宽阔的端到端DRN可以胜过交流,并使用生理上合理的频率区域。我们还表明,端到端方法比针对脑电图的经典alpha,beta和伽马频带的传统带通滤波器学习更复杂的过滤器,并且该性能可以从特定于通道的过滤方法中受益。此外,由于整个网络中利用Riemannian特定信息的利用,建筑分析揭示了可以进一步改进的领域。因此,我们的研究表明了如何设计和训练DRN从原始的脑电图中推断出与任务相关的信息,而无需手工制作的滤镜库,并突出了端到端DRN的潜力,例如EE(G)-SPDNET,用于高性能EEG解码。

State-of-the-art performance in electroencephalography (EEG) decoding tasks is currently often achieved with either Deep-Learning (DL) or Riemannian-Geometry-based decoders (RBDs). Recently, there is growing interest in Deep Riemannian Networks (DRNs) possibly combining the advantages of both previous classes of methods. However, there are still a range of topics where additional insight is needed to pave the way for a more widespread application of DRNs in EEG. These include architecture design questions such as network size and end-to-end ability. How these factors affect model performance has not been explored. Additionally, it is not clear how the data within these networks is transformed, and whether this would correlate with traditional EEG decoding. Our study aims to lay the groundwork in the area of these topics through the analysis of DRNs for EEG with a wide range of hyperparameters. Networks were tested on five public EEG datasets and compared with state-of-the-art ConvNets. Here we propose EE(G)-SPDNet, and we show that this wide, end-to-end DRN can outperform the ConvNets, and in doing so use physiologically plausible frequency regions. We also show that the end-to-end approach learns more complex filters than traditional band-pass filters targeting the classical alpha, beta, and gamma frequency bands of the EEG, and that performance can benefit from channel specific filtering approaches. Additionally, architectural analysis revealed areas for further improvement due to the possible under utilisation of Riemannian specific information throughout the network. Our study thus shows how to design and train DRNs to infer task-related information from the raw EEG without the need of handcrafted filterbanks and highlights the potential of end-to-end DRNs such as EE(G)-SPDNet for high-performance EEG decoding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源