论文标题

Causaldialogue:在对话中建模话语级因果关系

CausalDialogue: Modeling Utterance-level Causality in Conversations

论文作者

Tuan, Yi-Lin, Albalak, Alon, Xu, Wenda, Saxon, Michael, Pryor, Connor, Getoor, Lise, Wang, William Yang

论文摘要

尽管采用了广泛的采用,但神经对话模型尚未与人类展示自然的聊天功能。在这项研究中,我们将用户的话语视为原因和产生的响应作为效果,并认识到原因的变化应该会产生不同的效果。为了进一步探讨这个概念,我们通过人群来汇编了一个名为Causaldialogue的新数据集和扩展。该数据集在有向的无环图(DAG)结构中包含多个因果对。我们的分析表明,传统的损失功能难以有效地纳入DAG结构,这使我们提出了一种称为指数最大平均治疗效果(EXMATE)的因果关系增强方法,以增强在训练神经对话模型中的话语水平上因果关系的影响。为了评估考虑对话生成中因果关系的需求,我们使用不同模型,推理和培训方法在Causaldialogue数据集上建立了全面的基准。通过实验,我们发现像Exmate这样的因果关系损失可以提高常规损失功能的多样性和敏捷性,并且在此新数据集中仍有改进的余地可以达到人类水平的质量。

Despite their widespread adoption, neural conversation models have yet to exhibit natural chat capabilities with humans. In this research, we examine user utterances as causes and generated responses as effects, recognizing that changes in a cause should produce a different effect. To further explore this concept, we have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing. This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure. Our analysis reveals that traditional loss functions struggle to effectively incorporate the DAG structure, leading us to propose a causality-enhanced method called Exponential Maximum Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models. To evaluate the needs of considering causality in dialogue generation, we built a comprehensive benchmark on CausalDialogue dataset using different models, inference, and training methods. Through experiments, we find that a causality-inspired loss like ExMATE can improve the diversity and agility of conventional loss function and there is still room for improvement to reach human-level quality on this new dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源