论文标题

通过无数据的机器学习对元镜头的大面积优化

Large area optimization of meta-lens via data-free machine learning

论文作者

Zhelyeznyakov, Maksym V., Froch, Johannes E., Wirth-Singh, Anna, Noh, Jaebum, Rho, Junsuk, Brunton, Steven L., Majumdar, Arka

论文摘要

亚波长衍射光学元磁呈现多尺度的光学系统,其中需要通过全波电磁模拟对组成型亚波长散射器或元原子的行为进行建模,而全波电磁模拟可以使用射线/波浪光学进行建模。当前的大规模元元素模拟技术依赖于局部相位近似(LPA),在该局相近似(LPA)中,在该近似近似值(LPA)中,不同的元原子之间的耦合被完全忽略了。在这里,我们介绍了一个物理知识的神经网络,该网络可以有效地对元启示进行建模,同时仍将元原子之间的所有耦合结合在一起。与现有的深度学习技术通常预测元原子的平均传播和反射系数,我们预测了完整的电磁场分布。我们通过设计1mm光圈圆柱元镜头表现出比在LPA下设计的1mm圆柱元镜头来证明我们技术的功效。我们通过实验验证了反向设计的元镜头的最大强度改善(最高$ 53 \%$)。我们报告的方法可以在合理的时间内设计大量光圈$(\ sim 10^4-10^5λ)$元视线(在图形处理单元上约15分钟),而无需依赖任何近似值。

Sub-wavelength diffractive optics meta-optics present a multi-scale optical system, where the behavior of constituent sub-wavelength scatterers, or meta-atoms, need to be modelled by full-wave electromagnetic simulations, whereas the whole meta-optical system can be modelled using ray/ wave optics. Current simulation techniques for large-scale meta-optics rely on the local phase approximation (LPA), where the coupling between dissimilar meta-atoms are completely neglected. Here we introduce a physics-informed neural network, which can efficiently model the meta-optics while still incorporating all of the coupling between meta-atoms. Unlike existing deep learning techniques which generally predict the mean transmission and reflection coefficients of meta-atoms, we predict the full electro-magnetic field distribution. We demonstrate the efficacy of our technique by designing 1mm aperture cylindrical meta-lenses exhibiting higher efficiency than the ones designed under LPA. We experimentally validated the maximum intensity improvement (up to $53\%$) of the inverse-designed meta-lens. Our reported method can design large aperture $(\sim 10^4-10^5λ)$ meta-optics in a reasonable time (approximately 15 minutes on a graphics processing unit) without relying on any approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源