论文标题
基于原则的基于钴碳酸盐碳酸盐含量伪能力的电化学反应性的见解
First-Principles-Based Insight into Electrochemical Reactivity in a Cobalt-Carbonate-Hydrate Pseudocapacitor
论文作者
论文摘要
碳酸盐氢氧化钴(CCH)是一种具有高电容和循环稳定性的伪胶质材料。以前,据报道,CCH假能映射物质本质上是正常的。最近的结构表征表明它们本质上是六角形的。但是,他们的H位置仍然不清楚。在这项工作中,我们进行了第一原理模拟以识别H位置。通过模拟,我们可以考虑晶体内部的各种基本质子化反应,并计算评估去质子化的电动力(EMF)($ v_ \ mathrm {dp} $)。与反应的实验电位窗口($ <0.6 $ V(相对于饱和的钙胶电极(SCE))),计算的$ v_ \ mathrm {dp} $(vs. sce)值($ 3.05 $ v)超出了潜在的窗口,表明在晶体内绝对不会发生去质子。这可能归因于晶体中强烈形成的氢键(H键),从而导致结构稳定。我们通过考虑CCH晶体的生长机制进一步研究了实际电容材料中的晶体各向异性。通过将我们的X射线衍射(XRD)峰模拟与实验结构分析相关联,我们发现CCH $ \ {(\ bar {1} \ bar {1} \ bar {1} \ bar {1})之间形成的H键形成$ ab $ - 平面)可能会导致1D增长(与$ c $轴一起堆叠)。
Cobalt carbonate hydroxide (CCH) is a pseudocapacitive material with remarkably high capacitance and cycle stability. Previously, it was reported that CCH pseudocapacitive materials are orthorhombic in nature. Recent structural characterization has revealed that they are hexagonal in nature; however, their H positions still remain unclear. In this work, we carried out first-principles simulations to identify the H positions. Through the simulations, we could consider various fundamental deprotonation reactions inside the crystal and computationally evaluate the electromotive forces (EMF) of the deprotonation ($V_\mathrm{dp}$). Compared with the experimental potential window of the reaction ($< 0.6$ V (vs. saturated calomel electrode (SCE))), the computed $V_\mathrm{dp}$ (vs. SCE) value ($3.05$ V) was beyond the potential window, indicating that deprotonation never occurred inside the crystal. This may be attributed to the strongly formed hydrogen-bonds (H-bonds) in the crystal, thereby leading to the structural stabilization. We further investigated the crystal anisotropy in an actual capacitive material by considering the growth mechanism of the CCH crystal. By associating our X-ray diffraction (XRD) peak simulations with experimental structural analysis, we found that the H-bonds formed between CCH $\{(\bar{1}\bar{1}\bar{1}), (2\bar{1}\bar{1}), (2\bar{1}1)\}$ planes (approximately parallel to $ab$-plane) can result in 1-D growth (stacked along with $c$-axis).