论文标题

ZEROTOP:使用大语言模型的零射击以任务为导向的语义解析

ZEROTOP: Zero-Shot Task-Oriented Semantic Parsing using Large Language Models

论文作者

Mekala, Dheeraj, Wolfe, Jason, Roy, Subhro

论文摘要

我们探讨了大型语言模型(LLMS)用于零声语义解析的使用。语义解析涉及将自然语言映射到特定于任务的含义表示。通常对公开可用的文本和代码进行了语言模型,并且不能期望将其直接概括为零照片设置中的特定领域解析任务。在这项工作中,我们提出了Zerotop,这是一种以任务为导向的解析方法,将语义解析问题分解为一组抽象性和提取性提问的问题(QA)问题,使我们能够利用LLMS到零声明的能力,使其能够零声明零声明。对于每种话语,我们都会提示LLM提出与其顶级意图和一组插槽相对应的问题,并使用LLM世代来构建目标含义表示。我们观察到当前的LLM无法检测到无法回答的问题。因此,无法处理与缺少插槽相对应的问题。为了解决此问题,我们使用合成负面样本在公共质量检查数据集上微调语言模型。实验结果表明,我们基于QA的分解与微型LLM配对可以正确解析MTOP数据集中的话语的16%,而无需任何带注释的数据。

We explore the use of large language models (LLMs) for zero-shot semantic parsing. Semantic parsing involves mapping natural language utterances to task-specific meaning representations. Language models are generally trained on the publicly available text and code and cannot be expected to directly generalize to domain-specific parsing tasks in a zero-shot setting. In this work, we propose ZEROTOP, a zero-shot task-oriented parsing method that decomposes a semantic parsing problem into a set of abstractive and extractive question-answering (QA) problems, enabling us to leverage the ability of LLMs to zero-shot answer reading comprehension questions. For each utterance, we prompt the LLM with questions corresponding to its top-level intent and a set of slots and use the LLM generations to construct the target meaning representation. We observe that current LLMs fail to detect unanswerable questions; and as a result, cannot handle questions corresponding to missing slots. To address this problem, we fine-tune a language model on public QA datasets using synthetic negative samples. Experimental results show that our QA-based decomposition paired with the fine-tuned LLM can correctly parse ~16% of utterances in the MTOP dataset without requiring any annotated data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源