论文标题
用于黑洞空位的固定极限表面的准本地,功能分析检测方法
A Quasi-local, Functional Analytic Detection Method for Stationary Limit Surfaces of Black Hole Spacetimes
论文作者
论文摘要
我们提出了一种准本地,功能分析方法,以定位并不变地表征带有固定区域的黑洞空间的固定极限表面。该方法基于Dirac,Klein-Gordon,Klein-Gordon,Maxwell和Fierz-Pauli Hamiltonians的椭圆度 - 高透明度过渡,这些黑洞空间的间距性高空呈现,仅发生在平稳限制表面的位置,并且才能从Andentary限制表面的位置出现,并且可以从Hamilton的主要符号的行为中确定。因此,由于它仅与固定极限表面对相应基本费物和玻色子的时间演变的影响有关,因此该方法与通常采用标量多项式曲率不变性或cartan不变的常规检测程序大不相同,相比之下,这种情况是使用了当地的差距黑洞,这是造成黑洞的当地差异。作为应用程序,我们确定了Kerr-Newman,Schwarzschild-De保姆和Taub-Nut Black Hole Papetimes的固定极限表面的位置。最后,我们表明,对于具有静态区域的黑洞空位,我们的功能分析方法是准本地事件范围检测器,并引起了黑洞熵的关系概念。
We present a quasi-local, functional analytic method to locate and invariantly characterize the stationary limit surfaces of black hole spacetimes with stationary regions. The method is based on ellipticity-hyperbolicity transitions of the Dirac, Klein-Gordon, Maxwell, and Fierz-Pauli Hamiltonians defined on spacelike hypersurfaces of such black hole spacetimes, which occur only at the locations of stationary limit surfaces and can be ascertained from the behaviors of the principal symbols of the Hamiltonians. Therefore, since it relates solely to the effects that stationary limit surfaces have on the time evolutions of the corresponding elementary fermions and bosons, this method is profoundly different from the usual detection procedures that employ either scalar polynomial curvature invariants or Cartan invariants, which, in contrast, make use of the local geometries of the underlying black hole spacetimes. As an application, we determine the locations of the stationary limit surfaces of the Kerr-Newman, Schwarzschild-de Sitter, and Taub-NUT black hole spacetimes. Finally, we show that for black hole spacetimes with static regions, our functional analytic method serves as a quasi-local event horizon detector and gives rise to a relational concept of black hole entropy.