论文标题

基于对象检测的电源线绝缘子的检查:低数据测量器中的初始故障检测

Object detection-based inspection of power line insulators: Incipient fault detection in the low data-regime

论文作者

Das, Laya, Saadat, Mohammad Hossein, Gjorgiev, Blazhe, Auger, Etienne, Sansavini, Giovanni

论文摘要

基于深度学习的对象检测是检测电源线中故障绝缘子的强大方法。这涉及从头开始训练对象检测模型,或微调在基准计算机视觉数据集中预先训练的模型。这种方法可以很好地与大量绝缘体图像一起使用,但是在低数据状态下可能导致不可靠的模型。当前的文献主要集中于检测绝缘帽的存在或不存在,这是一个相对容易的检测任务,并且不考虑检测更细的故障,例如闪烁和损坏的磁盘。在本文中,我们为绝缘体制定了三个对象检测任务,并从空中图像中检查了资产检查,重点是磁盘中的初期故障。我们策划了一个大量的绝缘图像参考数据集,该数据集可用于学习可靠的功能,以检测健康和故障的绝缘体。我们研究在低目标数据制度中使用此数据集的优点,通过对参考数据集进行预培训,然后在目标数据集上进行微调。结果表明,对象检测模型可用于在极端的阶段检测绝缘体中的故障,并且转移学习根据对象检测模型的类型增加了价值。我们确定了决定低数据政权和概述潜在方法以改善最先进的方法的关键因素。

Deep learning-based object detection is a powerful approach for detecting faulty insulators in power lines. This involves training an object detection model from scratch, or fine tuning a model that is pre-trained on benchmark computer vision datasets. This approach works well with a large number of insulator images, but can result in unreliable models in the low data regime. The current literature mainly focuses on detecting the presence or absence of insulator caps, which is a relatively easy detection task, and does not consider detection of finer faults such as flashed and broken disks. In this article, we formulate three object detection tasks for insulator and asset inspection from aerial images, focusing on incipient faults in disks. We curate a large reference dataset of insulator images that can be used to learn robust features for detecting healthy and faulty insulators. We study the advantage of using this dataset in the low target data regime by pre-training on the reference dataset followed by fine-tuning on the target dataset. The results suggest that object detection models can be used to detect faults in insulators at a much incipient stage, and that transfer learning adds value depending on the type of object detection model. We identify key factors that dictate performance in the low data-regime and outline potential approaches to improve the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源