论文标题

牛虹膜细分的新型深度学习框架

Novel Deep Learning Framework For Bovine Iris Segmentation

论文作者

Yoon, Heemoon, Park, Mira, Lee, Sang-Hee

论文摘要

虹膜分割是确定动物生物识别以建立牲畜的可追溯性系统的第一步。在这项研究中,我们提出了一个新颖的深度学习框架,以使用Bovineaaeeyes80公共数据集使用注释标签,以最少使用注释标签。在实验中,选择具有VGG16骨架的U-NET作为编码器和解码器模型的最佳组合,证明了99.50%的精度和98.35%的骰子系数得分。值得注意的是,所选模型即使没有正确的注释数据也可以准确细分损坏的图像。这项研究有助于进步虹膜细分和可靠的DNNS培训框架的发展。

Iris segmentation is the initial step to identify biometric of animals to establish a traceability system of livestock. In this study, we propose a novel deep learning framework for pixel-wise segmentation with minimum use of annotation labels using BovineAAEyes80 public dataset. In the experiment, U-Net with VGG16 backbone was selected as the best combination of encoder and decoder model, demonstrating a 99.50% accuracy and a 98.35% Dice coefficient score. Remarkably, the selected model accurately segmented corrupted images even without proper annotation data. This study contributes to the advancement of the iris segmentation and the development of a reliable DNNs training framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源