论文标题
理解和改善投影头在自审学习中的作用
Understanding and Improving the Role of Projection Head in Self-Supervised Learning
论文作者
论文摘要
自我监督学习(SSL)旨在产生有用的功能表示,而无需访问任何人类标记的数据注释。由于基于对比度学习(例如SIMCLR)的最新SSL方法的成功,此问题已获得了普及。当前的大多数对比学习方法将一个参数投影的标题附加到某些骨干网络的末尾,以优化Infonce目标,然后在训练后丢弃学习的投影头。这提出了一个基本的问题:如果我们在训练后要丢弃,为什么需要一个可学习的预测头?在这项工作中,我们首先对针对投影头层作用的SSL训练行为进行系统研究。通过将投影头作为Infonce目标而不是网络的一部分的参数组件,我们提出了一种用于训练基于学习的SSL框架的替代优化方案。我们对多个图像分类数据集的实验研究证明了拟议方法对SSL文献中替代方案的有效性。
Self-supervised learning (SSL) aims to produce useful feature representations without access to any human-labeled data annotations. Due to the success of recent SSL methods based on contrastive learning, such as SimCLR, this problem has gained popularity. Most current contrastive learning approaches append a parametrized projection head to the end of some backbone network to optimize the InfoNCE objective and then discard the learned projection head after training. This raises a fundamental question: Why is a learnable projection head required if we are to discard it after training? In this work, we first perform a systematic study on the behavior of SSL training focusing on the role of the projection head layers. By formulating the projection head as a parametric component for the InfoNCE objective rather than a part of the network, we present an alternative optimization scheme for training contrastive learning based SSL frameworks. Our experimental study on multiple image classification datasets demonstrates the effectiveness of the proposed approach over alternatives in the SSL literature.