论文标题

使用一种新方法来界定图形矩阵的特征值的多重性

Bounding the multiplicities of eigenvalues of graph matrices in terms of circuit rank using a new approach

论文作者

Batal, Ahmet

论文摘要

令$ g $为简单的无向图,$θ(g)$是$ g $,$η_m(g)$和$ m_m(g,λ)$的电路排名,分别为无效和多样化图形矩阵$ m(g)$的eigenvalue $λ$。在情况下,$ m(g)$是邻接矩阵$ a(g)$(laplacian矩阵$ l(g)$,无标志性的laplacian矩阵$ q(g)$),我们在$θ(g)$λ$时(g)$λ$ nisteger(甚至是integer),在$θ(g)上,我们找到范围为$ m_m(g,λ)$。我们还表明,当$α$和$λ$是有理数时,可以找到$ m_ {a_α}(g,λ)$的相似边界,其中$a_α(g)$是$ g $的广义邻接矩阵。我们的边界仅包含$θ(g)$,而不是其中的倍数。到目前为止,只有$ m_a(g,λ)$(和后来的$ m_ {a_α}(g,λ)$)的界限已被发现,而这些电路等级的限制为$2θ(g)$。在$λ= 0 $的情况下,只有一个例外。 Wong等。 (2022)表明$η_a(g_c)\leqθ(g_c)+1 $,其中$ g_c $是一个连接的仙人掌,其块甚至是周期。我们的结果,尤其是将此结果推广到任何连接的图形$ g $的a(g)的偶数均匀性,以及任何连接的$ l(g)$和$ q(g)$的任何均匀的特征值。他们还表明,当仙人掌的每个街区都是一个奇怪的周期时,$η_a(g_c)\ leq 1 $。这也对应于我们界限的特殊情况。

Let $G$ be a simple undirected graph, $θ(G)$ be the circuit rank of $G$, $η_M(G)$ and $m_M(G,λ)$ be the nullity and the multiplicity of eigenvalue $λ$ of a graph matrix $M(G)$, respectively. In the case $M(G)$ is the adjacency matrix $A(G)$, (the Laplacian matrix $L(G)$, the signless Laplacian matrix $Q(G)$) we find bounds to $m_M(G,λ)$ in terms of $θ(G)$ when $λ$ is an integer (even integer, respectively). We also show that when $α$ and $λ$ are rational numbers similar bounds can be found for $m_{A_α}(G,λ)$ where $A_α(G)$ is the generalized adjaceny matrix of $G$. Our bounds contain only $θ(G)$, not a multiple of it. Up to now only bounds of $m_A(G,λ)$ (and later $m_{A_α}(G,λ)$) have been found in terms of the circuit rank and all of them contains $2θ(G)$. There is only one exception in the case $λ=0$. Wong et al. (2022) showed that $η_A(G_c)\leq θ(G_c)+1$, where $G_c$ is a connected cactus whose blocks are even cycles. Our result, in particular, generalizes and extends this result to the multiplicity of any even eigenvalue of A(G) of any even connected graph $G$, and of any even eigenvalue of $L(G)$ and $Q(G)$ of any connected graph $G$. They also showed that $η_A(G_c)\leq 1$ when every block of the cactus is an odd cycle. This also corresponds a special case of our bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源