论文标题

锂离子电池中基于硅的阳极的纳米结构策略:调整面积硅载荷,SEI形成/不可逆的容量损失,速率能力保留和电极耐用性

Nanostructuring Strategies for Silicon-based Anodes in Lithium-ion Batteries: Tuning Areal Silicon Loading, SEI Formation/Irreversible Capacity Loss, Rate Capability Retention and Electrode Durability

论文作者

Ezzedine, Mariam, Jardali, Fatme, Florea, Ileana, Zamfir, Mihai-robert, Cojocaru, Costel-sorin

论文摘要

硅是锂离子电池最有前途的阳极材料之一。硅在循环时忍受体积变化,这会导致随后的粉碎和容量褪色。这些缺点导致寿命差,并阻碍了硅阳极的商业化。在这项工作中,基于固定的碳纳米管(vacnt)的硅纳米颗粒(SINP)的混合纳米结构阳极具有定义间距的垂直排列碳纳米管(vacnts),以适应体积变化,以适应体积变化。实现具有良好稳定性和出色电化学特性的电极仍然是一个挑战。因此,我们在这里通过在固定的vacnts地毯长度上更改硅沉积时间,或通过固定的SINPS体积以vacnt长度的变化来调整主动硅面积的载荷。 SINP的低面积负载可提高循环过程中的容量稳定性,但由于固体电解质相(SEI)层的形成,触发了大型不可逆的容量损失。相比之下,较高的面积负载电极减少了形成的SEI的数量,但对随后的周期期间电极的容量稳定性产生负面影响。通过增加vacnts地毯长度而不会损害循环稳定性,可以实现更高的重量计能力和较高的硅面积负荷质量。该混合纳米结构电极在2000年周期后显示出极好的稳定性,可逆能力为1330 mAh G-1。

Silicon is one of the most promising anode materials for Lithium-ion batteries. Silicon endures volume changes upon cycling, which leads to subsequent pulverization and capacity fading. These drawbacks lead to a poor lifespan and hamper the commercialization of silicon anodes. In this work, a hybrid nanostructured anode based on silicon nanoparticles (SiNPs) anchored on vertically aligned carbon nanotubes (VACNTs) with defined spacing to accommodate volumetric changes is synthesized on commercial macroscopic current collector. Achieving electrodes with good stability and excellent electrochemical properties remain a challenge. Therefore, we herein tune the active silicon areal loading either through the modulation of the SiNPs volume by changing the silicon deposition time at a fixed VACNTs carpet length or through the variation of the VACNT length at a fixed SiNPs volume. The low areal loading of SiNPs improves capacity stability during cycling but triggers large irreversible capacity losses due to the formation of the solid electrolyte interphase (SEI) layer. By contrast, higher areal loading electrode reduces the quantity of the SEI formed, but negatively impacts the capacity stability of the electrode during the subsequent cycles. A higher gravimetric capacity and higher areal loading mass of silicon is achieved via an increase of VACNTs carpet length without compromising cycling stability. This hybrid nanostructured electrode shows an excellent stability with reversible capacity of 1330 mAh g-1 after 2000 cycles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源