论文标题
Euler's方程通过Lagrangian Dynamics具有广义坐标
Euler's Equation via Lagrangian Dynamics with Generalized Coordinates
论文作者
论文摘要
Euler的方程将刚体的角动量变化与施加的扭矩变化。本文通过使用Lagrangian动力学来填补文献中的空白,从而根据广义坐标得出Euler的方程式。这是通过以3-2-1和3-1-3欧拉角以及Euler参数(即单位四季度)来参数化角速度向量来完成的。
Euler's equation relates the change in angular momentum of a rigid body to the applied torque. This paper fills a gap in the literature by using Lagrangian dynamics to derive Euler's equation in terms of generalized coordinates. This is done by parameterizing the angular velocity vector in terms of 3-2-1 and 3-1-3 Euler angles as well as Euler parameters, that is, unit quaternions.