论文标题

操作员放松和古典阴影的最佳深度

Operator relaxation and the optimal depth of classical shadows

论文作者

Ippoliti, Matteo, Li, Yaodong, Rakovszky, Tibor, Khemani, Vedika

论文摘要

经典的阴影是通过使用随机测量来以样本效率学习量子状态的许多特性的强大方法。在这里,我们研究了通过``浅阴影''来学习保利操作员的期望值的样本复杂性,这是一个最近宣传的古典阴影版本,其中随机步骤由可变深度$ t $的本地统一电路实现。我们表明,阴影规范(控制样品复杂性的数量)是根据在随机化(``wirling'')电路下的海森堡时间演变的特性表示的 - 即重量分布的演变,表征了算子在其非琐事上行动的地点数量的重量分布。对于重量$ k $的空间连续处理的保利操作员,这需要两个过程之间的竞争:操作员扩散(因此,操作员的支持会随着时间的推移而增长,增加了其重量)和操作员放松(因此,大部分操作员会发展出识别率操作员的平衡密度,从而减小了其重量)。从这张简单的图片中,我们得出(i)在阴影规范上的上限,对于深度$ t \ sim \ log(k)$,可以保证在任何空间维度中的$ t = 0 $方案的样本复杂性的指数增益,并且(ii)定量结果在平均范围内的一维近似值中的一个维度,包括在均值范围内的一个尺寸,包括在数字上,以符合良好的范围,以确定不可能的范围,以实现良好的数字,以实现数字的数字,以实现数字的数字,以实现数字的数字。模拟。我们的工作将量子多体动力学中的基本思想与量子信息科学的应用联系起来,并为学习量子状态的不同属性的高度优化方案铺平了道路。

Classical shadows are a powerful method for learning many properties of quantum states in a sample-efficient manner, by making use of randomized measurements. Here we study the sample complexity of learning the expectation value of Pauli operators via ``shallow shadows'', a recently-proposed version of classical shadows in which the randomization step is effected by a local unitary circuit of variable depth $t$. We show that the shadow norm (the quantity controlling the sample complexity) is expressed in terms of properties of the Heisenberg time evolution of operators under the randomizing (``twirling'') circuit -- namely the evolution of the weight distribution characterizing the number of sites on which an operator acts nontrivially. For spatially-contiguous Pauli operators of weight $k$, this entails a competition between two processes: operator spreading (whereby the support of an operator grows over time, increasing its weight) and operator relaxation (whereby the bulk of the operator develops an equilibrium density of identity operators, decreasing its weight). From this simple picture we derive (i) an upper bound on the shadow norm which, for depth $t\sim \log(k)$, guarantees an exponential gain in sample complexity over the $t=0$ protocol in any spatial dimension, and (ii) quantitative results in one dimension within a mean-field approximation, including a universal subleading correction to the optimal depth, found to be in excellent agreement with infinite matrix product state numerical simulations. Our work connects fundamental ideas in quantum many-body dynamics to applications in quantum information science, and paves the way to highly-optimized protocols for learning different properties of quantum states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源