论文标题

6D的4D n = 2 scfts的同构

Isomorphisms of 4d N=2 SCFTs from 6d

论文作者

Distler, Jacques, Elliot, Grant, Kang, Monica Jinwoo, Lawrie, Craig

论文摘要

存在4D $ \ MATHCAL {n} = 2 $ scfts中的$ \ Mathcal {s} $,它们具有不同的结构,其结构与刺穿的Riemann表面相同,但似乎描述了相同的物理学。这些类$ \ Mathcal {s} $理论中的一些具有另一种构造,作为6d $(1,0)$ scfts的圆环。我们证明6D SCFT是同构。每个6D SCFT可以通过HIGGS分支重新归一化组流来从父级6D SCFT中获得,并且父理论具有离散的对称性,其中相关的Higgs分支流被交换。这种离散对称性的存在,可以嵌入增强的连续对称性中,证明了原始的$ \ Mathcal {S} $理论的原始对实际上是同构。

There exist 4d $\mathcal{N}=2$ SCFTs in class $\mathcal{S}$ which have different constructions as punctured Riemann surfaces, but which nevertheless appear to describe the same physics. Some of these class $\mathcal{S}$ theories have an alternative construction as torus-compactifications of 6d $(1,0)$ SCFTs. We demonstrate that the 6d SCFTs are isomorphic. Each 6d SCFT in question can be obtained from a parent 6d SCFT by Higgs branch renormalization group flow, and the parent theory possesses a discrete symmetry under which the relevant Higgs branch flows are exchanged. The existence of this discrete symmetry, which may be embedded in an enhanced continuous symmetry, proves that the original pair of class $\mathcal{S}$ theories are, in fact, isomorphic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源