论文标题

二维convavo-convex体的方向动力学

Orientation dynamics of two-dimensional concavo-convex bodies

论文作者

Ravichandran, S., Wettlaufer, J. S.

论文摘要

我们研究了二维凹形convex固体的取向动力学,比它们在重力下的流体更致密。我们表明,根据水平的角度$ ϕ $量化了身体的取向动力学,在雷诺数数字$ re_ {c}^{(1)} $上经历了跨临界分叉,并在reynolds number $ re re re _ re _ re _ pitchfork bifurcation上经历the;对于$ re <re _ {c}^{(1)} $,$ ϕ = 0 $的凹陷方向是不稳定的,并且物体倾斜到$ ϕ =π$ entientation中。对于$ re_ {c}^{(1)} <re <re <re_ {c}^{(2)} $,下落的身体在$ ϕ = 0 \ text {and} ϕ =π$的稳定下降时具有两个稳定的平衡。对于$ re> re_ {c}^{(2)} $,$ ϕ = 0 $的凹入方向再次不稳定,并且开始凹入凹槽的身体表现出有关不稳定固定点的稳定振荡,最终将其倒入稳定的$ ϕ =π$方向上。 $ re_ {c}^{(2)} \大约15 $发生的下叉叉分叉的发生与涡旋脱落的$ re $不同,这会导致$ ϕ =π$ equilibrium也变得不稳定,并且身体变得不稳定,大约在plutterting pluttering plutters flutters flutter flutter flutter flutter flutter flutter flutter flutter flutter flutter flutter。此处证明的不规则形状的复杂定向动力学在各种环境中与从水材的翻滚到软体动物壳的沉降相关。

We study the orientation dynamics of two-dimensional concavo-convex solid bodies more dense than the fluid through which they fall under gravity. We show that the orientation dynamics of the body, quantified in terms of the angle $ϕ$ relative to the horizontal, undergoes a transcritical bifurcation at a Reynolds number $Re_{c}^{(1)}$, and a subcritical pitchfork bifurcation at a Reynolds number $Re_{c}^{(2)}$. For $Re<Re_{c}^{(1)}$, the concave-downwards orientation of $ϕ=0$ is unstable and bodies overturn into the $ϕ=π$ orientation. For $Re_{c}^{(1)}<Re<Re_{c}^{(2)}$, the falling body has two stable equilibria at $ϕ=0\text{ and }ϕ=π$ for steady descent. For $Re>Re_{c}^{(2)}$, the concave-downwards orientation of $ϕ=0$ is again unstable, and bodies that start concave-downwards exhibit overstable oscillations about the unstable fixed point, eventually tumbling into the stable $ϕ=π$ orientation. The $Re_{c}^{(2)}\approx15$ at which the subcritical pitchfork bifurcation occurs is distinct from the $Re$ for the onset of vortex shedding, which causes the $ϕ=π$ equilibrium to also become unstable, with bodies fluttering about $ϕ=π$. The complex orientation dynamics of irregularly shaped bodies evidenced here are relevant in a wide range of settings, from the tumbling of hydrometeors to settling of mollusk shells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源