论文标题

在开放世界中的人类活动认可

Human Activity Recognition in an Open World

论文作者

Prijatelj, Derek S., Grieggs, Samuel, Huang, Jin, Du, Dawei, Shringi, Ameya, Funk, Christopher, Kaufman, Adam, Robertson, Eric, Scheirer, Walter J.

论文摘要

在基于感知的人类活动识别(HAR)中管理新颖性在现实环境中至关重要,以提高任务绩效,并确保在先前见证的样本之外进行解决方案的概括。新颖性在HAR中表现为看不见的样本,活动,对象,环境和传感器以及其他方式。新颖性可能与任务相关,例如新班级或新功能,或者任务无关紧要,导致了令人讨厌的新颖性,例如从未见过的噪音,模糊或扭曲的视频记录。为了最佳地执行HAR,算法解决方案必须宽容于滋扰新颖性,并在面对新颖性时随着时间的流逝学习。本文1)在分类任务中对新颖性的先前定义进行形式化新颖性的定义,2)提出了一个增量开放世界学习(OWL)协议(OWL)协议,并将其应用于动力学数据集,以生成新的基准KOWL-718,3)生成当前的型号的范围供应范围时,请介绍新的模型,以供应范围供应时,供应范围备用时间范围。并修改以后的动力学更新。实验分析包括消融研究,该研究对动力学-AVA注释的各种条件下的不同模型的表现。该协议作为用于使用KOWL-718基准复制实验的算法的协议将在https://github.com/prijatelj/prijatelj/human-activity-recognitive-recognition-in-recognition-in-an-an-open-world上公开发布。该代码可用于以渐进的开放世界方式分析动力学数据集的不同注释和子集,并随着发布动力学的进一步更新而扩展。

Managing novelty in perception-based human activity recognition (HAR) is critical in realistic settings to improve task performance over time and ensure solution generalization outside of prior seen samples. Novelty manifests in HAR as unseen samples, activities, objects, environments, and sensor changes, among other ways. Novelty may be task-relevant, such as a new class or new features, or task-irrelevant resulting in nuisance novelty, such as never before seen noise, blur, or distorted video recordings. To perform HAR optimally, algorithmic solutions must be tolerant to nuisance novelty, and learn over time in the face of novelty. This paper 1) formalizes the definition of novelty in HAR building upon the prior definition of novelty in classification tasks, 2) proposes an incremental open world learning (OWL) protocol and applies it to the Kinetics datasets to generate a new benchmark KOWL-718, 3) analyzes the performance of current state-of-the-art HAR models when novelty is introduced over time, 4) provides a containerized and packaged pipeline for reproducing the OWL protocol and for modifying for any future updates to Kinetics. The experimental analysis includes an ablation study of how the different models perform under various conditions as annotated by Kinetics-AVA. The protocol as an algorithm for reproducing experiments using the KOWL-718 benchmark will be publicly released with code and containers at https://github.com/prijatelj/human-activity-recognition-in-an-open-world. The code may be used to analyze different annotations and subsets of the Kinetics datasets in an incremental open world fashion, as well as be extended as further updates to Kinetics are released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源