论文标题

部分可观测时空混沌系统的无模型预测

Approaching Globally Optimal Energy Efficiency in Interference Networks via Machine Learning

论文作者

Peng, Bile, Besser, Karl-Ludwig, Raghunath, Ramprasad, Jorswieck, Eduard A.

论文摘要

这项工作提出了一种机器学习方法,以优化多电池无线网络中的能源效率(EE)。这个优化问题是非凸,很难找到其全局最佳。在文献中,提出了简单但次优的方法或具有高复杂性和较差可伸缩性的最佳方法。相比之下,我们提出了一个机器学习框架,以接近全球最佳。尽管神经网络(NN)训练需要适度的时间,但使用训练模型的应用需要非常低的计算复杂性。特别是,我们基于随机动作引入了一种新的目标函数,以解决非凸优化问题。此外,我们设计了一个专用的NN体系结构,用于置换置换式的多细胞网络优化问题。它根据其在EE计算中的角色对通道进行分类。这样,我们将域知识编码为NN设计,并将光线放入机器学习的黑匣子中。培训和测试结果表明,提出的没有监督的方法,并且通过合理的计算工作实现了EE接近分支和结合算法的全局最佳量。因此,提出的方法在计算复杂性和性能之间平衡。

This work presents a machine learning approach to optimize the energy efficiency (EE) in a multi-cell wireless network. This optimization problem is non-convex and its global optimum is difficult to find. In the literature, either simple but suboptimal approaches or optimal methods with high complexity and poor scalability are proposed. In contrast, we propose a machine learning framework to approach the global optimum. While the neural network (NN) training takes moderate time, application with the trained model requires very low computational complexity. In particular, we introduce a novel objective function based on stochastic actions to solve the non-convex optimization problem. Besides, we design a dedicated NN architecture for the multi-cell network optimization problems that is permutation-equivariant. It classifies channels according to their roles in the EE computation. In this way, we encode our domain knowledge into the NN design and shed light into the black box of machine learning. Training and testing results show that the proposed method without supervision and with reasonable computational effort achieves an EE close to the global optimum found by the branch-and-bound algorithm. Hence, the proposed approach balances between computational complexity and performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源