论文标题

准碘电路量子电动力学

Quasiperiodic circuit quantum electrodynamics

论文作者

Herrig, Tobias, Pixley, Jedediah H., König, Elio J., Riwar, Roman-Pascal

论文摘要

超导电路是实现量子信息硬件并模仿拓扑材料的极其通用的平台。我们在这里展示了电容器和常规的超导体 - 绝缘体 - 导管连接器的简单布置如何以非线性电容元件的形式实现更广泛的系统,而非线性电容元件则相对于量化的CooperPair Parge。我们的设置允许创建在运输自由度中定义的受保护的狄拉克点,其存在会导致对经典有限频率电流噪声的抑制。此外,准二氧化碳可以通过消失的电荷量子波动来模拟Anderson在电荷空间中的定位。通过宏观运输自由度实现的实现,可以直接概括为任意维度,并实现了所考虑模型的真正非相互作用版本。作为一种前景,我们讨论了模拟扭曲双层石墨烯已知的魔法效应的传输版本的潜在想法。

Superconducting circuits are an extremely versatile platform to realize quantum information hardware and to emulate topological materials. We here show how a simple arrangement of capacitors and conventional superconductor-insulator-superconductor junctions can realize an even broader class of systems, in the form of a nonlinear capacitive element which is quasiperiodic with respect to the quantized Cooper-pair charge. Our setup allows to create protected Dirac points defined in the transport degrees of freedom, whose presence leads to a suppression of the classical finite-frequency current noise. Furthermore, the quasiperiodicity can emulate Anderson localization in charge space, measurable via vanishing charge quantum fluctuations. The realization by means of the macroscopic transport degrees of freedom allows for a straightforward generalization to arbitrary dimensions and implements truly non-interacting versions of the considered models. As an outlook, we discuss potential ideas to simulate a transport version of the magic-angle effect known from twisted bilayer graphene.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源