论文标题
天体全息图的离散基础
A discrete basis for celestial holography
论文作者
论文摘要
天体全息图在四维渐变相关因子在二维天体球体上的保形相关器方面,在四维渐近平面的空间上提供了散射幅度的重新制定。 {sossemble粒子}状态的基础先前是根据由增强权重$δ= 1 +iλ$标记为$λ\ in \ mathbb {r} $标记的共形初级波段的。在这里,我们表明{\ it iNCETE}正交和完整的基础存在于\ Mathbb {z} $中的$δ\。这个新的基础由一个离散的记忆和戈德石可观测值组成,它们相互轭,并允许重建属于Schwartz空间的重力信号。我们展示了如何构建涉及整个Goldstone操作员塔的通用状态,并评估更高的Spin Goldstone 2点功能。最后,我们根据新离散的基础,将较高旋转电荷的塔式提供了$ w_ {1+ \ infty} $ loop代数(在同一螺旋部门)的表示形式。
Celestial holography provides a reformulation of scattering amplitudes in four dimensional asymptotically flat spacetimes in terms of conformal correlators of operators on the two dimensional celestial sphere in a basis of boost eigenstates. A basis of {massless particle} states has previously been identified in terms of conformal primary wavefunctions labeled by a boost weight $Δ= 1 + iλ$ with $λ\in \mathbb{R}$. Here we show that a {\it discrete} orthogonal and complete basis exists for $Δ\in \mathbb{Z}$. This new basis consists of a tower of discrete memory and Goldstone observables, which are conjugate to each other and allow to reconstruct gravitational signals belonging to the Schwartz space. We show how generalized dressed states involving the whole tower of Goldstone operators can be constructed and evaluate the higher spin Goldstone 2-point functions. Finally, we recast the tower of higher spin charges providing a representation of the $w_{1+\infty}$ loop algebra (in the same helicity sector) in terms of the new discrete basis.