论文标题

关于实现现实世界中智能决策的实现:基础决策模型观点

On Realization of Intelligent Decision-Making in the Real World: A Foundation Decision Model Perspective

论文作者

Wen, Ying, Wan, Ziyu, Zhou, Ming, Hou, Shufang, Cao, Zhe, Le, Chenyang, Chen, Jingxiao, Tian, Zheng, Zhang, Weinan, Wang, Jun

论文摘要

现实环境的普遍不确定性和动态性质为广泛实施机器驱动的智能决策(IDM)系统带来了重大挑战。因此,IDM应该具有持续获得新技能并有效概括在广泛应用程序中的能力。超越任务和应用程序边界的人工通用情报(AGI)的进步对于增强IDM至关重要。最近的研究已广泛研究了变压器神经体系结构,作为各种任务的基础模型,包括计算机视觉,自然语言处理和强化学习。我们建议可以通过使用变压器体系结构将各种决策任务作为序列解码任务来开发基础决策模型(FDM),从而为在复杂的现实世界中扩展IDM应用程序提供了有希望的解决方案。在本文中,我们讨论了IDM基础决策模型提供的效率和概括改进,并探讨其在多代理游戏AI,生产计划和机器人技术任务中的潜在应用。最后,我们提出了一项案例研究,展示了我们的FDM实施,数字桥(DB1)具有13亿个参数,在870个任务中实现了人级绩效,例如文本生成,图像字幕,视频游戏,机器人控制,机器人控制和旅行推销员问题。作为基础决策模型,DB1代表了朝着更自主和高效的现实世界IDM应用程序迈出的第一步。

The pervasive uncertainty and dynamic nature of real-world environments present significant challenges for the widespread implementation of machine-driven Intelligent Decision-Making (IDM) systems. Consequently, IDM should possess the ability to continuously acquire new skills and effectively generalize across a broad range of applications. The advancement of Artificial General Intelligence (AGI) that transcends task and application boundaries is critical for enhancing IDM. Recent studies have extensively investigated the Transformer neural architecture as a foundational model for various tasks, including computer vision, natural language processing, and reinforcement learning. We propose that a Foundation Decision Model (FDM) can be developed by formulating diverse decision-making tasks as sequence decoding tasks using the Transformer architecture, offering a promising solution for expanding IDM applications in complex real-world situations. In this paper, we discuss the efficiency and generalization improvements offered by a foundation decision model for IDM and explore its potential applications in multi-agent game AI, production scheduling, and robotics tasks. Lastly, we present a case study demonstrating our FDM implementation, DigitalBrain (DB1) with 1.3 billion parameters, achieving human-level performance in 870 tasks, such as text generation, image captioning, video game playing, robotic control, and traveling salesman problems. As a foundation decision model, DB1 represents an initial step toward more autonomous and efficient real-world IDM applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源