论文标题

改性重力及其应用的有效流体方法

The Effective Fluid approach for Modified Gravity and its applications

论文作者

Nesseris, Savvas

论文摘要

在这篇综述中,我们简要总结了所谓的有效液体方法,这是一个紧凑的框架,可用于描述多种不同的重力模型为一般相对论(GR)和暗能量(DE)流体。这种方法与宇宙学有效田间理论相辅相成,具有多种好处,因为它可以更轻松地将大多数修饰的重力模型包含到最先进的玻尔兹曼码中,这些模型通常是针对GR和DE进行硬编码的。此外,它还可以为其行为提供理论​​上的见解,因为在线性扰动理论中,很容易得出出于身体动机的数量,例如DE各向异性应力或DE Sound Speed。我们还通过$ f(r)$,horndeski和标量矢量调节器模型介绍了有效的流体方法的一些明确应用,即如何使用这种方法轻松地求解扰动方程,并将上述修改的重力模型纳入Boltzmann代码,以便使用Monte Carte Care Analyses获得Boltzmann模型,以便获得boltzmann。

In this review we briefly summarize the so-called effective fluid approach, which is a compact framework that can be used to describe a plethora of different modified gravity models as general relativity (GR) and a dark energy (DE) fluid. This approach, which is complementary to the cosmological effective field theory, has several benefits as it allows for the easier inclusion of most modified gravity models into the state-of-the-art Boltzmann codes, that are typically hard-coded for GR and DE. Furthermore, it can also provide theoretical insights into their behavior, since in linear perturbation theory it is easy to derive physically motivated quantities such as the DE anisotropic stress or the DE sound speed. We also present some explicit applications of the effective fluid approach with $f(R)$, Horndeski and Scalar-Vector-Tensor models, namely how this approach can be used to easily solve the perturbation equations and incorporate the aforementioned modified gravity models into Boltzmann codes so as to obtain cosmological constraints using Monte Carlo analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源