论文标题
用于损坏数据重建的贝叶斯强大回归方法
A Bayesian Robust Regression Method for Corrupted Data Reconstruction
论文作者
论文摘要
由于噪声和数据损坏的广泛存在,因此以一定比例的损坏响应变量恢复了真实的回归参数是一项必不可少的任务。克服这个问题的方法通常涉及强大的最小二乘回归,但是当面对严重的适应性对抗攻击时,很少有方法表现良好。在许多应用程序中,通常可以从历史数据或工程经验中获得先验知识,并通过将先验信息纳入强大的回归方法中,我们开发了一种有效的可靠回归方法,可以抵抗适应性的对抗性攻击。首先,我们提出了新的旅行(使用简单的先验回归型硬阈值方法)算法,这在面对适应性对抗攻击时改善了分解点。然后,为了提高鲁棒性并减少由先验纳入的估计误差,我们使用贝叶斯重量加权的想法来构建更强大的BRHT(通过硬阈值通过硬阈值)算法构建更强大的BRHT(稳健的贝叶斯重新重量回归)算法。我们证明了在温和条件下提出的算法的理论融合,并且广泛的实验表明,在不同类型的数据集攻击下,我们的算法优于其他基准测试。最后,我们将方法应用于涉及太空太阳能数组的现实应用程序中的数据回收问题,证明了它们的良好适用性。
Because of the widespread existence of noise and data corruption, recovering the true regression parameters with a certain proportion of corrupted response variables is an essential task. Methods to overcome this problem often involve robust least-squares regression, but few methods perform well when confronted with severe adaptive adversarial attacks. In many applications, prior knowledge is often available from historical data or engineering experience, and by incorporating prior information into a robust regression method, we develop an effective robust regression method that can resist adaptive adversarial attacks. First, we propose the novel TRIP (hard Thresholding approach to Robust regression with sImple Prior) algorithm, which improves the breakdown point when facing adaptive adversarial attacks. Then, to improve the robustness and reduce the estimation error caused by the inclusion of priors, we use the idea of Bayesian reweighting to construct the more robust BRHT (robust Bayesian Reweighting regression via Hard Thresholding) algorithm. We prove the theoretical convergence of the proposed algorithms under mild conditions, and extensive experiments show that under different types of dataset attacks, our algorithms outperform other benchmark ones. Finally, we apply our methods to a data-recovery problem in a real-world application involving a space solar array, demonstrating their good applicability.