论文标题
手性国家转移下
Chiral state transfer under dephasing
论文作者
论文摘要
在非铁族系统的复杂征收特征力中出现了异常点,并引起了丰富的关键行为。一个杰出的例子是手性状态转移,在该州可以在特殊点周围的绝热环境下交换,但只沿着一个方向进行交换。在耗散的量子系统中,这种特殊的周围通常伴随着腐烂,其影响超出了非富米汉顿人的描述。在这项工作中,我们详细研究采用整体动力学对包围动力学的影响,采用完整的lindblad主方程。引入实验相关的量子跳跃过程,这些过程解释了驱动因素,我们表明,在相应的liouvillian超级驱动器的特征范围内出现了差距。因此,手性状态转移不会在绝热限制中进行,因为系统始终遵循Liouvillian的准稳态状态,无论包围方向如何。然而,手性在中间环境时间恢复,在两个环绕方向上,动力学是非绝热的,这与典型的手性状态转移不同。尽管我们的结果适用于最近的一些实验,但我们特别研究了最近的冷原子实验,并表明观察到的长期手性仅限于其中的特殊环绕路径。我们的研究提供了对实验条件下手性状态转移的进一步见解,并有助于从非炎症物理学的角度控制开放系统动力学。
Exceptional points emerge in the complex eigenspecra of non-Hermitian systems, and give rise to rich critical behaviors. An outstanding example is the chiral state transfer, where states can swap under an adiabatic encircling around the exceptional point, but only along one direction. In dissipative quantum systems, such exceptional-point encirclings are often accompanied by decoherence, whose impact is beyond the description of non-Hermitian Hamiltonians. In this work, we study in detail the effects of dephasing on the encircling dynamics, adopting the full Lindblad master equation. Introducing experimentally relevant quantum-jump processes that account for dephasing, we show that gaps emerge in the eigenspectra landscape of the corresponding Liouvillian superoperator. It follows that the chiral state transfer does not take place in the adiabatic limit, since the system always adiabatically follows the quasi-steady state of the Liouvillian regardless of the encircling direction. Nevertheless, the chirality is restored at intermediate encircling times, where the dynamics is non-adiabatic in both encircling directions, distinct from the typical chiral state transfer in non-Hermitian systems. While our results are applicable to several recent experiments, we examine a recent cold-atom experiment in particular, and show that the observed long-time chirality is but limited to the special encircling path therein. Our study provides further insight into the chiral state transfer under experimental conditions, and is helpful for controlling open-system dynamics from the perspective of non-Hermitian physics.