论文标题

数据类别的全光转换和加密

Data class-specific all-optical transformations and encryption

论文作者

Bai, Bijie, Wei, Heming, Yang, Xilin, Mengu, Deniz, Ozcan, Aydogan

论文摘要

衍射光网络为视觉计算任务提供了丰富的机会,因为衍射处理器可以直接访问场景的空间信息,而无需任何数字预处理步骤。在这里,我们介绍了衍射网络的输入和视图(FOV)之间全面执行的数据类别转换。对象的视觉信息被编码到输入处光场的振幅(a),相(p)或强度(i)中,该信息由数据类特异性衍射网络全面处理。在输出时,图像传感器阵列直接测量了转换的模式,该模式使用预先分配给不同数据类的转换矩阵(即每个数据类别的单独矩阵)进行了全面加密。可以通过应用与匹配数据类相对应的正确解密密钥(反向转换)来恢复原始输入图像,同时应用任何其他密钥将导致信息丢失。这些全光衍射转换的类别特异性创造了机会,可以将不同的密钥分配给不同的用户;每个用户只能将仅一个数据类的获取图像解码,以全面加密的方式为多个用户提供服务。我们在数值上演示了使用各种图像数据集的A-> a,i-> i和p-> i转换的全光学类特异性转换。我们还通过使用两光子聚合化制造特定于类的I-> I-i转换衍射网络,并在1550 nm波长下成功测试了该框架的可行性。数据类别的全光转换为图像和数据加密提供了一种快速,节能的方法,从而增强了数据安全和隐私。

Diffractive optical networks provide rich opportunities for visual computing tasks since the spatial information of a scene can be directly accessed by a diffractive processor without requiring any digital pre-processing steps. Here we present data class-specific transformations all-optically performed between the input and output fields-of-view (FOVs) of a diffractive network. The visual information of the objects is encoded into the amplitude (A), phase (P), or intensity (I) of the optical field at the input, which is all-optically processed by a data class-specific diffractive network. At the output, an image sensor-array directly measures the transformed patterns, all-optically encrypted using the transformation matrices pre-assigned to different data classes, i.e., a separate matrix for each data class. The original input images can be recovered by applying the correct decryption key (the inverse transformation) corresponding to the matching data class, while applying any other key will lead to loss of information. The class-specificity of these all-optical diffractive transformations creates opportunities where different keys can be distributed to different users; each user can only decode the acquired images of only one data class, serving multiple users in an all-optically encrypted manner. We numerically demonstrated all-optical class-specific transformations covering A-->A, I-->I, and P-->I transformations using various image datasets. We also experimentally validated the feasibility of this framework by fabricating a class-specific I-->I transformation diffractive network using two-photon polymerization and successfully tested it at 1550 nm wavelength. Data class-specific all-optical transformations provide a fast and energy-efficient method for image and data encryption, enhancing data security and privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源