论文标题

用两个Cozero二元组属的环表征

Characterization of rings with genus two cozero-divisor graphs

论文作者

Mathil, Praveen, Baloda, Barkha, Kumar, Jitender

论文摘要

让$ r $成为团结的戒指。环$ r $的COZERO划分图是一个无向的简单图形,其顶点是$ r $的所有非零和非单位元素的集合,两个不同的顶点$ x $和$ y $相邻,并且仅当$ x \ notin ry $和$ ynotin ry $和$ y ynotin y \ notin rx rx。 RING $ r $的简化Cozero-Divisor图是一个无方向的简单图形,其顶点集是所有非繁琐的主要理想的$ r $和两个独特的顶点$(a)$(a)$和$(b)$的集合,并且仅当$(a)\ b)\ sebset(b)$和(b)$和(b)$(b)$(b)$(b)$(b)$(b)$(a)\ spet(a)时(a)。在本文中,我们表征了所有类别的有限非本地换向环,而Cozero-Divisor图和降低的Cozero-Divisor图的所有类别都是二属。

Let $R$ be a ring with unity. The cozero-divisor graph of a ring $R$ is an undirected simple graph whose vertices are the set of all non-zero and non-unit elements of $R$ and two distinct vertices $x$ and $y$ are adjacent if and only if $x \notin Ry$ and $y \notin Rx$. The reduced cozero-divisor graph of a ring $R$, is an undirected simple graph whose vertex set is the set of all nontrivial principal ideals of $R$ and two distinct vertices $(a)$ and $(b)$ are adjacent if and only if $(a) \not\subset (b)$ and $(b) \not\subset (a)$. In this paper, we characterize all classes of finite non-local commutative rings for which the cozero-divisor graph and reduced cozero-divisor graph is of genus two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源