论文标题
通过整合隐式空间相关性来提高城市交通速度预测
Boosting Urban Traffic Speed Prediction via Integrating Implicit Spatial Correlations
论文作者
论文摘要
城市交通速度预测旨在估计改善城市运输服务的未来交通速度。通过通过预定的地理结构({\ it,例如,区域网格或道路网络)利用明确的空间关系(地理位置接近)来利用明确的空间关系(地理位置接近)来利用交通速度发展模式的时间依赖性和时间依赖性。在实现有希望的结果的同时,当前的交通速度预测方法仍然忽略了隐式空间相关性(交互),而网格/图形卷积无法捕获。为了应对挑战,我们提出了一个通用模型,以实现当前的交通速度预测方法来保留隐式空间相关性。具体而言,我们首先开发了双变换器体系结构,包括空间变压器和时间变压器。空间变压器会自动学习超出地理结构边界的整个路段的隐式空间相关性,而时间变压器旨在捕获隐式空间相关性的动态变化模式。然后,为了进一步整合显式和隐式的空间相关性,我们提出了一个蒸馏式学习框架,其中现有的交通速度预测方法被视为教师模型,并且建议的双转化器体系结构被视为学生模型。三个现实世界数据集的广泛实验表明,我们所提出的框架对现有方法的显着改善。
Urban traffic speed prediction aims to estimate the future traffic speed for improving the urban transportation services. Enormous efforts have been made on exploiting spatial correlations and temporal dependencies of traffic speed evolving patterns by leveraging explicit spatial relations (geographical proximity) through pre-defined geographical structures ({\it e.g.}, region grids or road networks). While achieving promising results, current traffic speed prediction methods still suffer from ignoring implicit spatial correlations (interactions), which cannot be captured by grid/graph convolutions. To tackle the challenge, we propose a generic model for enabling the current traffic speed prediction methods to preserve implicit spatial correlations. Specifically, we first develop a Dual-Transformer architecture, including a Spatial Transformer and a Temporal Transformer. The Spatial Transformer automatically learns the implicit spatial correlations across the road segments beyond the boundary of geographical structures, while the Temporal Transformer aims to capture the dynamic changing patterns of the implicit spatial correlations. Then, to further integrate both explicit and implicit spatial correlations, we propose a distillation-style learning framework, in which the existing traffic speed prediction methods are considered as the teacher model, and the proposed Dual-Transformer architectures are considered as the student model. The extensive experiments over three real-world datasets indicate significant improvements of our proposed framework over the existing methods.