论文标题

使用半监督的自动编码器在线积极学习,用于软传感器开发

Online Active Learning for Soft Sensor Development using Semi-Supervised Autoencoders

论文作者

Cacciarelli, Davide, Kulahci, Murat, Tyssedal, John

论文摘要

数据驱动的软传感器在工业和化学过程中广泛使用,以预测在常规操作期间很难跟踪实际价值的难以衡量的过程变量。这些传感器使用的回归模型通常需要大量标记的示例,但是鉴于优质检查所需的时间和成本,获得标签信息可能非常昂贵。在这种情况下,主动学习方法可能是非常有益的,因为他们可以建议查询最有用的标签。但是,为回归提出的大多数主动学习策略都集中在离线设置上。在这项工作中,我们将其中一些方法适应基于流的方案,并展示如何使用它们来选择最有用的数据点。我们还演示了如何使用基于正交自动编码器的半监督架构来学习较低维空间中的显着特征。田纳西州伊士曼进程用于比较拟议方法的预测性能。

Data-driven soft sensors are extensively used in industrial and chemical processes to predict hard-to-measure process variables whose real value is difficult to track during routine operations. The regression models used by these sensors often require a large number of labeled examples, yet obtaining the label information can be very expensive given the high time and cost required by quality inspections. In this context, active learning methods can be highly beneficial as they can suggest the most informative labels to query. However, most of the active learning strategies proposed for regression focus on the offline setting. In this work, we adapt some of these approaches to the stream-based scenario and show how they can be used to select the most informative data points. We also demonstrate how to use a semi-supervised architecture based on orthogonal autoencoders to learn salient features in a lower dimensional space. The Tennessee Eastman Process is used to compare the predictive performance of the proposed approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源