论文标题
明亮和爱警笛的宇宙学
Cosmography with bright and Love sirens
论文作者
论文摘要
精确宇宙学对于了解宇宙中的不同能量成分及其通过宇宙时代的发展至关重要。重力波源是标准警报器,可以准确地绘制宇宙中的距离。然后,我们可以与源红移信息一起探测宇宙的扩展历史记录。我们探讨了各种重力波检测器网络的功能,以限制不同的宇宙学模型,同时使用单独的波形模型来从相等的质量二进制中子星体中为灵感和后连接的重力波信号的一部分。我们考虑两种不同的途径来测量引力波来源的红移:首先,我们检查了通过Kilonova或二进制中子星合并后的kilonova或伽马射线爆发检测(电磁对应方法)的电磁测量值;其次,我们从重力波信号本身中估算出以潮汐爱数为特征的组件恒星之间的绝热潮汐,以提供第二个质量尺度并打破质量 - 红移堕落性(无对等方法)。我们发现,电磁对应方法更适合测量哈勃常数,而无对外的方法将更严格的界限放在其他宇宙参数上。在下一代重力波检测器网络的时代,两种方法都在观察一年后,都实现了哈勃常数$ h_0 $的次级测量。 $λ$ CDM模型中的暗物质能量密度参数$ω_ {\ rm m} $可以使用对应方法以百分比的精度测量,而无需方法可以实现次级精度。但是,我们没有发现邮政信号对这些精度测量值有显着贡献。
Precision cosmology is crucial to understand the different energy components in the Universe and their evolution through cosmic time. Gravitational wave sources are standard sirens that can accurately map out distances in the Universe. Together with the source redshift information, we can then probe the expansion history of the Universe. We explore the capabilities of various gravitational-wave detector networks to constrain different cosmological models while employing separate waveform models for inspiral and post-merger part of the gravitational wave signal from equal mass binary neutron stars. We consider two different avenues to measure the redshift of a gravitational-wave source: first, we examine an electromagnetic measurement of the redshift via either a kilonova or a gamma ray burst detection following a binary neutron star merger (the electromagnetic counterpart method); second, we estimate the redshift from the gravitational-wave signal itself from the adiabatic tides between the component stars characterized by the tidal Love number, to provide a second mass-scale and break the mass-redshift degeneracy (the counterpart-less method). We find that the electromagnetic counterpart method is better suited to measure the Hubble constant while the counterpart-less method places more stringent bounds on other cosmological parameters. In the era of next-generation gravitational-wave detector networks, both methods achieve sub-percent measurement of the Hubble constant $H_0$ after one year of observations. The dark matter energy density parameter $Ω_{\rm M}$ in the $Λ$CDM model can be measured at percent-level precision using the counterpart method, whereas the counterpart-less method achieves sub-percent precision. We, however, do not find the postmerger signal to contribute significantly to these precision measurements.