论文标题

信息电池应用聚合物的信息驱动的选择

Informatics-Driven Selection of Polymers for Fuel-Cell Applications

论文作者

Tran, Huan, Shen, Kuan-Hsuan, Shukla, Shivank, Kwon, Ha-Kyung, Ramprasad, Rampi

论文摘要

现代燃料电池技术使用Nafion作为质子交换膜(PEM)的首选材料,并用作结合材料(Ionomer),用于组装阳极和阴极的催化剂层。这些应用需要高质子电导率以及其他要求。例如,预计PEM将阻止电子,氧气和氢渗透和扩散,而阳极/阴极离子体应允许氢/氧气轻松移动,以便它们可以到达催化剂纳米颗粒。鉴于Nafion的一些众所周知的限制,例如低玻璃过渡温度,社区正处于积极的搜索Nafion替代品的中。在这项工作中,我们提出了一个基于信息学的方案,以搜索大型聚合物化学空间,其中包括建立目标应用程序所需的属性列表,为这些属性开发预测性的机器学习模型,定义搜索空间以及使用开发的模型来筛选搜索空间。使用该方案,我们已经确定了60种新的聚合物候选PEM,阳极离子体和阴极离子体,我们希望我们能够将其提升到下一步,即通过合成和测试来验证设计。拟议的信息学方案是通用的,可用于为将来的多个应用程序选择聚合物。

Modern fuel cell technologies use Nafion as the material of choice for the proton exchange membrane (PEM) and as the binding material (ionomer), used to assemble the catalyst layers of the anode and cathode. These applications demand high proton conductivity as well as other requirements. For example, PEM is expected to block electrons, oxygen, and hydrogen from penetrating and diffusing while the anode/cathode ionomer should allow hydrogen/oxygen to move easily, so that they can reach the catalyst nanoparticles. Given some of the well-known limits of Nafion, such as low glass-transition temperature, the community is in the midst of an active search for Nafion replacements. In this work, we present an informatics-based scheme to search large polymer chemical spaces, which includes establishing a list of properties needed for the targeted applications, developing predictive machine-learning models for these properties, defining a search space, and using the developed models to screen the search space. Using the scheme, we have identified 60 new polymer candidates for PEM, anode ionomer, and cathode ionomer that we hope will be advanced to the next step, i.e., validating the designs through synthesis and testing. The proposed informatics scheme is generic, and can be used to select polymers for multiple applications in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源