论文标题
图形和组的双曲线的整体标准
Integral criteria of hyperbolicity for graphs and groups
论文作者
论文摘要
我们根据``大地虫的平均宽度''建立了图表的三个标准。特别是,我们证明,如果Geodesic Bigon $β$的范Kampen区域的比率以及在有限呈现的组$ G $的Cayley图中的$β$的长度在上面的限制为$ G $的限制。 我们计划使用这些结果来表征双曲线群体,以随机步行。
We establish three criteria of hyperbolicity of a graph in terms of ``average width of geodesic bigons''. In particular we prove that if the ratio of the Van Kampen area of a geodesic bigon $β$ and the length of $β$ in the Cayley graph of a finitely presented group $G$ is bounded above then $G$ is hyperbolic. We plan to use these results to characterize hyperbolic groups in terms of random walks.